13 research outputs found

    Approaches for estimating unsaturated soil hydraulic conductivities at various bulk densities with the extended Mualem-van Genuchten model

    Get PDF
    The Mualem-van Genuchten model has been widely used for estimating unsaturated soil hydraulic conductivity (Ku) from measured saturated hydraulic conductivity (Ks) and fitted water retention curve (WRC) parameters. Soil bulk density (ρb) variations affect the accuracy of Ku estimates. In this study, we extend the Mualem-van Genuchten model to account for the ρb effect with ρb-related WRC and Ks models. We apply two functions (A and B) that relate the van Genuchten WRC model to ρb and two models (1 and 2) that estimate Ks with various ρb. By combining the ρb-related WRC functions and Ks models, we develop four integrated approaches (i.e., A1, A2, B1, and B2) for estimating Ku at various ρb. Kumeasurements made on five soils with various textures and ρb are used to evaluate the accuracy of the four approaches. The results show that all approaches produce reasonable Ku estimates, with average root mean square errors (RMSEs) less than 0.35 (expressed in dimensionless unit because logarithmic Ku values are used). Approach A2, with an average RMSE of 0.25, agrees better with Ku measurements than does Approach A1 that has an average RMSE of 0.28. This is because Model 2 accounts for the WRC shape effect near saturation. Approaches A1 and A2 give more accurate Ku estimates than do Approaches B1 and B2 which both have average RMSEs of 0.35, because Function A performs better in estimating WRCs than does Function B. The proposed approaches could be incorporated into simulation models for improved prediction of water, solute, and gas transport in soils

    Determining In-situ Unsaturated Soil Hydraulic Conductivity at a Fine Depth Scale with Heat Pulse and Water Potential Sensors

    Get PDF
    Unsaturated hydraulic conductivity (K) of surface soil changes substantially with space and time, and it is of great importance for many ecological, agricultural, and hydrological applications. In general, K is measured in the laboratory, or more commonly, predicted using soil water retention curve and saturated hydraulic conductivity. In the field, K can be determined through infiltration experiments. However, none of these approaches are capable of continuously monitoring K insitu at fine depth scales. In this study, we propose and investigate an approach to continuously estimate fine depth-scale K dynamics under field conditions. Evaporation rate and change in water storage in a near-surface soil layer are measured with the heat pulse method. Then, water flux density at the lower boundary of the soil layer is estimated from evaporation rate, change in water storage, and rainfall or irrigation rate using a simple water balance approach. Finally, K values at different soil depths are derived using the Buckingham-Darcy equation from water flux densities and measured water potential gradients. A field experiment is performed to evaluate the performance of the proposed approach. K values at 2-, 4-, 7.5-, and 12.5-cm depths are estimated with the new approach. The results show that in-situ K estimates vary with time following changes in soil water content, and the K-water content relationship changes with depth due to the difference in bulk density. In-situ estimated K-matric potential curves agree well with those measured in the laboratory. In-situ K estimates also show good agreement with the Mualem-van Genuchten model predictions, with an average root mean square error in log10 (K, mm h-1) of 0.54 and an average bias of 0.17. The new approach provides reasonable in-situ K estimates and has potential to reveal the influences of natural soil conditions on hydraulic properties as they change with depth and time

    Surface Energy Balance Partitioning in Tilled Bare Soils

    Get PDF
    Core Ideas Following tillage, soil bulk density increased after rainfall. Increases in soil bulk density decreased the available energy for turbulent fluxes. Surface energy balances in tilled soils are affected by changes in bulk density. Surface energy balance (SEB) partitioning is critical to heat and water budgets at the soil–atmosphere interface. Tillage can alter SEB partitioning by initially decreasing soil bulk density (ρb), after which ρb increases with time due to rainfall and other factors. The objective of this study is to determine the effect of ρb changes on SEB partitioning. We measured SEB components for two 4‐d periods (Period 1 and Period 2) at an early‐tilled (T1) and late‐tilled (T2) bare soil site. During Period 1, ρb, net radiation, and soil heat flux were similar for T1 and T2, but evaporation was higher at T2. During Period 2, ρb was 0.11 g cm‾3 larger at T2 than at T1. This resulted in a 7% higher soil heat flux at T2, which in turn caused 13% less evaporation. These results highlight the importance of considering dynamic ρb with time when determining SEB partitioning for tilled soils

    Thermal property values of a central Iowa soil as functions of soil water content and bulk density or of soil air content

    Get PDF
    Soil thermal properties play important roles in dynamic heat and mass transfer processes, and they vary with soil water content (θ) and bulk density (ρ b). Both θ and ρ bchange with time, particularly in recently tilled soil. However, few studies have addressed the full extent of soil thermal property changes with θ and ρ b. The objective of this study is to examine how changes in ρ b with time after tillage impact soil thermal properties (volumetric heat capacity, C v, thermal diffusivity, k, and thermal conductivity, λ). The study provides thermal property values as functions of θ and ρ b and of air content (n air) on undisturbed soil cores obtained at selected times following tillage. Heat pulse probe measurements of thermal properties were obtained on each soil core at saturated, partially saturated (θ at pressure head of −50 kPa) and oven‐dry conditions. Generally, kand λ increased with increasing ρ b at the three water conditions. The C v increased as ρ bincreased in the oven‐dry and unsaturated conditions and decreased as ρ b increased in the saturated condition. For a given θ, a larger ρ b was associated with larger thermal property values, especially for λ. The figures of C v, k and λ versus θ and ρ b, as well as C v, k and λ versus n air, represented the range of soil conditions following tillage. Trends in the relationships of thermal property values with θ and ρ b were described by 3‐D surfaces, whereas each thermal property had a linear relationship with n air. Clearly, recently tilled soil thermal property values were quite dynamic temporally due to varying θ and ρ b. The dynamic soil thermal property values should be considered in soil heat and mass transfer models either as 3‐D functions of θ and ρ b or as linear functions of n air

    Fruit load governs transpiration of olive trees

    Get PDF
    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs.</p

    Surface Energy Balance Partitioning in Tilled Bare Soils

    Get PDF
    Core Ideas Following tillage, soil bulk density increased after rainfall. Increases in soil bulk density decreased the available energy for turbulent fluxes. Surface energy balances in tilled soils are affected by changes in bulk density. Surface energy balance (SEB) partitioning is critical to heat and water budgets at the soil–atmosphere interface. Tillage can alter SEB partitioning by initially decreasing soil bulk density (ρb), after which ρb increases with time due to rainfall and other factors. The objective of this study is to determine the effect of ρb changes on SEB partitioning. We measured SEB components for two 4‐d periods (Period 1 and Period 2) at an early‐tilled (T1) and late‐tilled (T2) bare soil site. During Period 1, ρb, net radiation, and soil heat flux were similar for T1 and T2, but evaporation was higher at T2. During Period 2, ρb was 0.11 g cm‾3 larger at T2 than at T1. This resulted in a 7% higher soil heat flux at T2, which in turn caused 13% less evaporation. These results highlight the importance of considering dynamic ρb with time when determining SEB partitioning for tilled soils.This article is published as Akuoko, Ohene, Dilia Kool, Thomas J. Sauer, and Robert Horton. "Surface energy balance partitioning in tilled bare soils." Agricultural & Environmental Letters 3, no. 1 (2018): 1-4. doi: 10.2134/ael2018.07.0039.</p

    Approaches for estimating unsaturated soil hydraulic conductivities at various bulk densities with the extended Mualem-van Genuchten model

    No full text
    The Mualem-van Genuchten model has been widely used for estimating unsaturated soil hydraulic conductivity (Ku) from measured saturated hydraulic conductivity (Ks) and fitted water retention curve (WRC) parameters. Soil bulk density (ρb) variations affect the accuracy of Ku estimates. In this study, we extend the Mualem-van Genuchten model to account for the ρb effect with ρb-related WRC and Ks models. We apply two functions (A and B) that relate the van Genuchten WRC model to ρb and two models (1 and 2) that estimate Ks with various ρb. By combining the ρb-related WRC functions and Ks models, we develop four integrated approaches (i.e., A1, A2, B1, and B2) for estimating Ku at various ρb. Kumeasurements made on five soils with various textures and ρb are used to evaluate the accuracy of the four approaches. The results show that all approaches produce reasonable Ku estimates, with average root mean square errors (RMSEs) less than 0.35 (expressed in dimensionless unit because logarithmic Ku values are used). Approach A2, with an average RMSE of 0.25, agrees better with Ku measurements than does Approach A1 that has an average RMSE of 0.28. This is because Model 2 accounts for the WRC shape effect near saturation. Approaches A1 and A2 give more accurate Ku estimates than do Approaches B1 and B2 which both have average RMSEs of 0.35, because Function A performs better in estimating WRCs than does Function B. The proposed approaches could be incorporated into simulation models for improved prediction of water, solute, and gas transport in soils.This is a manuscript of an article published as Tian, Z., Kool, D., Ren, T., Horton, R., Heitman, J.L., Approaches for estimating unsaturated soil hydraulic conductivities at various bulk densities with the extended Mualem-van Genuchten model, Journal of Hydrology (2019), doi: 10.1016/j.jhydrol.2019.03.027.</p

    Determining In-situ Unsaturated Soil Hydraulic Conductivity at a Fine Depth Scale with Heat Pulse and Water Potential Sensors

    No full text
    Unsaturated hydraulic conductivity (K) of surface soil changes substantially with space and time, and it is of great importance for many ecological, agricultural, and hydrological applications. In general, K is measured in the laboratory, or more commonly, predicted using soil water retention curve and saturated hydraulic conductivity. In the field, K can be determined through infiltration experiments. However, none of these approaches are capable of continuously monitoring K insitu at fine depth scales. In this study, we propose and investigate an approach to continuously estimate fine depth-scale K dynamics under field conditions. Evaporation rate and change in water storage in a near-surface soil layer are measured with the heat pulse method. Then, water flux density at the lower boundary of the soil layer is estimated from evaporation rate, change in water storage, and rainfall or irrigation rate using a simple water balance approach. Finally, K values at different soil depths are derived using the Buckingham-Darcy equation from water flux densities and measured water potential gradients. A field experiment is performed to evaluate the performance of the proposed approach. K values at 2-, 4-, 7.5-, and 12.5-cm depths are estimated with the new approach. The results show that in-situ K estimates vary with time following changes in soil water content, and the K-water content relationship changes with depth due to the difference in bulk density. In-situ estimated K-matric potential curves agree well with those measured in the laboratory. In-situ K estimates also show good agreement with the Mualem-van Genuchten model predictions, with an average root mean square error in log10 (K, mm h-1) of 0.54 and an average bias of 0.17. The new approach provides reasonable in-situ K estimates and has potential to reveal the influences of natural soil conditions on hydraulic properties as they change with depth and time.This is a manuscript of an article published as Tian, Zhengchao, Dilia Kool, Tusheng Ren, Robert Horton, and Joshua L. Heitman. "Determining In-situ Unsaturated Soil Hydraulic Conductivity at a Fine Depth Scale with Heat Pulse and Water Potential Sensors." Journal of Hydrology (2018). doi: 10.1016/j.jhydrol.2018.07.052. Posted with permission.</p

    Thermal property values of a central Iowa soil as functions of soil water content and bulk density or of soil air content

    No full text
    Soil thermal properties play important roles in dynamic heat and mass transfer processes, and they vary with soil water content (θ) and bulk density (ρ b). Both θ and ρ bchange with time, particularly in recently tilled soil. However, few studies have addressed the full extent of soil thermal property changes with θ and ρ b. The objective of this study is to examine how changes in ρ b with time after tillage impact soil thermal properties (volumetric heat capacity, C v, thermal diffusivity, k, and thermal conductivity, λ). The study provides thermal property values as functions of θ and ρ b and of air content (n air) on undisturbed soil cores obtained at selected times following tillage. Heat pulse probe measurements of thermal properties were obtained on each soil core at saturated, partially saturated (θ at pressure head of −50 kPa) and oven‐dry conditions. Generally, kand λ increased with increasing ρ b at the three water conditions. The C v increased as ρ bincreased in the oven‐dry and unsaturated conditions and decreased as ρ b increased in the saturated condition. For a given θ, a larger ρ b was associated with larger thermal property values, especially for λ. The figures of C v, k and λ versus θ and ρ b, as well as C v, k and λ versus n air, represented the range of soil conditions following tillage. Trends in the relationships of thermal property values with θ and ρ b were described by 3‐D surfaces, whereas each thermal property had a linear relationship with n air. Clearly, recently tilled soil thermal property values were quite dynamic temporally due to varying θ and ρ b. The dynamic soil thermal property values should be considered in soil heat and mass transfer models either as 3‐D functions of θ and ρ b or as linear functions of n air.This article is published as Tong, B., D. Kool, J. L. Heitman, T. J. Sauer, Z. Gao, and R. Horton. "Thermal property values of a central Iowa soil as functions of soil water content and bulk density or of soil air content." European Journal of Soil Science (2019). doi: 10.1111/ejss.12856.</p
    corecore